Facilities & Procedures

On this page:
Quadrupole (q) ICP-MS
Multiple Collection (MC) ICP-MS
Sample Preparation

Inductively coupled plasma (quadrupole) mass spectrometry (ICP-MS)

Inductively coupled plasma mass spectrometry (ICP-MS) is a fast, precise, and accurate multi-element analytical technique for the determination of trace element abundances. Because of its high sensitivity (detection limit at pptr level) and capability of analyzing both solution and solid samples, ICP-MS has broad applications in many fields including the earth, environmental, materials, biological, and medical sciences. Generally, samples are introduced into the ICP in solution or as a solid ablation stream from a laser in situ. Aqueous samples can be introduced as a wet aerosol using a Peltier cooled spray chamber, as a dry aerosol using a desolvating nebulizer (DSN-100), or as a vapor using a cold vapor generator. The use of Laser Ablation (LA) sampling can give added information on the spatial variations of elemental and isotopic composition in solid samples. The UCD/ICPMS possesses two New Wave Research UP-213 laser ablation systems.

Instrumental structure of ICP-MS (Courtesy of Agilent Technologies)

In ICP-MS, a sample in the form of an aerosol is introduced into high temperature argon plasma by a carrier gas. Aerosol particles are generated either by nebulizing a sample solution or by ablating a solid sample with a laser. The temperature of the centerline of argon plasma reaches ~6000 to 10000 K and the sample is vaporized, atomized, and ionized (mostly singly charged positive ions with small amounts of doubly charged ions). The ions are extracted from the plasma into a high vacuum (~ 10-5 torr) region and focused by the ion lens system. Ions are discriminated from one another according to their mass/charge ratio by the quadrupole mass analyzer and detected by an electron multiplier.

The UCD ICPMS center has two ICP quadrupole mass spectrometers (Agilent Techologies 7500a and 7500ce). The 7500ce instrument has an additional octopole component called a reaction/collision cell between the ion lens system and quadrupole (the reaction/collision cell is not shown in the above figure). When hydrogen gas is used to react with argon oxides and argon dimers to reduce their interference with elements such as Fe and Se. When helium gas is used, it decelerates compounds such as chlorine oxide and argon chloride through collision, reducing their interference with V and As. The reaction/collision cell ICP-MS is a useful tool for reducing interferences that cannot be minimized using standard methods.

Multiple-Collection ICP-MS

We utilize a Nu Plasma HR (Nu032) multiple-collection high-resolution double-focusing mass spectrometer ICP system (pictured above) capable of determining isotope ratios with external precision on the order of 10-20 ppm. This instrumentation better constrains isotopic proportions in natural samples than by quadrupole ICPMS or single-collector HR-ICPMS systems. MC-ICPMS (multiple collection inductively coupled plasma mass spectrometry) precision is similar to that achieved by TIMS (thermal ionization mass spectrometry) but has a tremendous speed advantage over TIMS for analyses can be performed within 20 minutes per sample (depending on the analytes) as compared to hours per sample typically required for TIMS. In addition, due to the ionization efficiency of the high temperature ICP ion source, MC-ICPMS can be used to study both traditional and nontraditional isotope systems for a wide range of applications. A compiled list of elements measured by MC-ICPMS techinques and estimate of peer reviewed publications since 1992 are included in the following figure from Douthitt, 2008:

Anal Bioanal Chem (2008) 390:437 – 440

Accurate and precise isotope ratio measurements require careful sample preparation techniques to remove interfering matrix and concentrate the target analytes involved. Matrix effects and non-resolvable isobaric interferences cause analytical artifact, making high presion isotopic analysis impossible. Most of our isotopic analytical methods entail chromatographic and/or redox-selective separations prior to analysis to eliminate analytical artifact. For laser ablation analysis, samples need to be fashioned into an appropriate thin section that is polished, mounted and sized for the laser sample cell. It is also imperative all analyses are standardized with suitable materials. Please contact Justin Glessner regarding isotopic sample preparation and standardization inquiries.